ORC ID ">
  • Users Online: 4318
  • Home
  • Print this page
  • Email this page
RESEARCH ARTICLE
Year : 2021  |  Volume : 16  |  Issue : 2  |  Page : 382-387

Dynamic changes in the systemic immune responses of spinal cord injury model mice


1 Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
2 Department of Radiology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
3 Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, China

Correspondence Address:
Bin Wang
Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province
China
Login to access the Email id

Source of Support: This study was supported by the National Natural Science Foundation of China, Nos. 81571213 (to BW), 81800583 (to YYX), 81601539 (to DM), and 81601084 (to YC); the National Key Research and Development Program of China, No. 2017YFA0104304 (to BW); the Nanjing Medical Science and Technique Development Foundation of China, Nos. QRX17006 (to BW), QRX17057 (to DM); the Key Project Supported by Medical Science and Technology Development Foundation, Nanjing Department of Health and the Nanjing Medical Science of China, No. 201803024 (to TYG) and Innovation Platform, No. ZDX16005 (to BW), Conflict of Interest: None


DOI: 10.4103/1673-5374.290910

Rights and Permissions

Intraspinal inflammatory and immune responses are considered to play central roles in the pathological development of spinal cord injury. This study aimed to decipher the dynamics of systemic immune responses, initiated by spinal cord injury. The spinal cord in mice was completely transected at T8. Changes in the in vivo inflammatory response, between the acute and subacute stages, were observed. A rapid decrease in C-reactive protein levels, circulating leukocytes and lymphocytes, spleen-derived CD4+ interferon-γ+ T-helper cells, and inflammatory cytokines, and a marked increase in neutrophils, monocytes, and CD4+CD25+FOXP3+ regulatory T-cells were observed during the acute phase. These systemic immune alterations were gradually restored to basal levels during the sub-acute phase. During the acute phase of spinal cord injury, systemic immune cells and factors showed significant inhibition; however, this inhibition was transient, and the indicators of these serious disorders gradually returned to baseline levels during the subacute phase. All experiments were performed in accordance with the institutional animal care guidelines, approved by the Institutional Animal Care and Use Committee of Experimental Animal Center of Drum Tower Hospital, China (approval No. 2019AE01040) on June 25, 2019.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed284    
    Printed0    
    Emailed0    
    PDF Downloaded80    
    Comments [Add]    

Recommend this journal