ORC ID , Shi-Qing Feng MD 1 ORC ID ">
  • Users Online: 450
  • Home
  • Print this page
  • Email this page
RESEARCH ARTICLE
Year : 2022  |  Volume : 17  |  Issue : 6  |  Page : 1334-1342

Identification of key genes involved in recovery from spinal cord injury in adult zebrafish


1 International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
2 Tianjin Medicine and Health Research Center, Tianjin Institute of Medical & Pharmaceutical Sciences, Tianjin, China
3 School of Medicine, Nankai University, Tianjin, China

Correspondence Address:
Shi-Qing Feng
International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin
China
Xue Yao
International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin
China
Login to access the Email id

Source of Support: This work was financially supported by the National Natural Science Foundation of China (No. 81972074; to XY), the National Key R&D Project (No. 2019YFA0112100; to SQF), Tianjin Key Research and Development Plan, Key Projects for Science and Technology Support (No. 19YFZCSY00660; to SQF), Tianjin Medical University General Hospital Youth Incubation Fund (No. ZYYFY2018003; to WYS), Conflict of Interest: None


DOI: 10.4103/1673-5374.327360

Rights and Permissions

Zebrafish are an effective vertebrate model to study the mechanisms underlying recovery after spinal cord injury. The subacute phase after spinal cord injury is critical to the recovery of neurological function, which involves tissue bridging and axon regeneration. In this study, we found that zebrafish spontaneously recovered 44% of their swimming ability within the subacute phase (2 weeks) after spinal cord injury. During this period, we identified 7762 differentially expressed genes in spinal cord tissue: 2950 were up-regulated and 4812 were down-regulated. These differentially expressed genes were primarily concentrated in the biological processes of the respiratory chain, axon regeneration, and cell-component morphogenesis. The genes were also mostly involved in the regulation of metabolic pathways, the cell cycle, and gene-regulation pathways. We verified the gene expression of two differentially expressed genes, clasp2 up-regulation and h1m down-regulation, in zebrafish spinal cord tissue in vitro. Pathway enrichment analysis revealed that up-regulated clasp2 functions similarly to microtubule-associated protein, which is responsible for axon extension regulated by microtubules. Down-regulated h1m controls endogenous stem cell differentiation after spinal cord injury. This study provides new candidate genes, clasp2 and h1m, as potential therapeutic intervention targets for spinal cord injury repair by neuroregeneration. All experimental procedures and protocols were approved by the Animal Ethics Committee of Tianjin Institute of Medical & Pharmaceutical Sciences (approval No. IMPS-EAEP-Q-2019-02) on September 24, 2019.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed564    
    Printed2    
    Emailed0    
    PDF Downloaded63    
    Comments [Add]    

Recommend this journal