ORC ID , Lu Liu2, Wen-Zhuo Dai2, Tao Ma PhD 1">
  • Users Online: 557
  • Home
  • Print this page
  • Email this page
RESEARCH ARTICLE
Year : 2022  |  Volume : 17  |  Issue : 8  |  Page : 1841-1849

Crry silencing alleviates Alzheimer’s disease injury by regulating neuroinflammatory cytokines and the complement system


1 Department of Neurology, Wuxi No. 2 People’s Hospital of Nanjing Medical University; Department of Neurology, Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, China
2 Department of Neurology, Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, China

Correspondence Address:
Tao Ma
Department of Neurology, Wuxi No. 2 People’s Hospital of Nanjing Medical University; Department of Neurology, Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province
China
Xi-Chen Zhu
Department of Neurology, Wuxi No. 2 People’s Hospital of Nanjing Medical University; Department of Neurology, Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province
China
Login to access the Email id

Source of Support: This study was supported by the National Natural Science Foundation of China (No. 81801054), the Natural Science Foundation of Jiangsu Province of China (No. BK20180166), the Wuxi Municipal Health and Family Planning Commission Fund of China (No. Q201722), Wuxi Top Talent Support Program for Young and Middle-aged People of Wuxi Health Committee of China (No. HB2020023), and China Postdoctoral Funding (all to XCZ), Conflict of Interest: None


DOI: 10.4103/1673-5374.332160

Rights and Permissions

Complement component (3b/4b) receptor 1 (CR1) expression is positively related to the abundance of phosphorylated microtubule-associated protein tau (tau), and CR1 expression is associated with susceptibility to Alzheimer’s disease. However, the exact role of CR1 in tau protein-associated neurodegenerative diseases is unknown. In this study, we show that the mouse Cr1-related protein Y (Crry) gene, Crry, is localized to microglia. We also found that Crry protein expression in the hippocampus and cortex was significantly elevated in P301S mice (a mouse model widely used for investigating tau pathology) compared with that in wild-type mice. Tau protein phosphorylation (at serine 202, threonine 205, threonine 231, and serine 262) and expression of the major tau kinases glycogen synthase kinase-3 beta and cyclin-dependent-like kinase 5 were greater in P301S mice than in wild-type mice. Crry silencing by lentivirus-transfected short hairpin RNA led to greatly reduced tau phosphorylation and glycogen synthase kinase-3 beta and cyclin-dependent-like kinase 5 activity. Crry silencing reduced neuronal apoptosis and rescued cognitive impairment of P301S mice. Crry silencing also reduced the levels of the neuroinflammatory factors interleukin-1 beta, tumor necrosis factor alpha, and interleukin-6 and the complement components complement 3 and complement component 3b. Our results suggest that Crry silencing in the P301S mouse model reduces tau protein phosphorylation by reducing the levels of neuroinflammation and complement components, thereby improving cognitive function.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed224    
    Printed4    
    Emailed0    
    PDF Downloaded40    
    Comments [Add]    

Recommend this journal