Close
  Indian J Med Microbiol
 

Figure 1: Schematic diagram outlining the potential modes of biophoton network communication and repair among neurons. If a neuron is very active or damaged (i.e., the biophoton neuron), its mitochondria may communicate with other neurons (the bystander neurons) through either axonal pathways and resulting synapse or through the extracellular matrix. The biophoton neuron, if damaged, may also use biophotons to repair itself and bystander neurons. Neurons that are not linked synaptically to the biophoton neuron nor in a surrounding region (through extracellular matrix) would remain unaffected (the unaffected neuron). Note that biophotons have a broad range of wavelengths, from ultraviolet to red to infrared (see key).

<b>Figure 1: Schematic diagram outlining the potential modes of biophoton network communication and repair among neurons.</b>
If a neuron is very active or damaged (i.e., the biophoton neuron), its mitochondria may communicate with other neurons (the bystander neurons) through either axonal pathways and resulting synapse or through the extracellular matrix. The biophoton neuron, if damaged, may also use biophotons to repair itself and bystander neurons. Neurons that are not linked synaptically to the biophoton neuron nor in a surrounding region (through extracellular matrix) would remain unaffected (the unaffected neuron). Note that biophotons have a broad range of wavelengths, from ultraviolet to red to infrared (see key).